\qquad

More Work with Parabolas
 Common Core Algebra I

The graphs of quadratic functions are more complex than linear and exponential because they include a turning point that is either the location of a maximum or a minimum. Today we will explore these functions more by using our calculator technology. But first, we need to examine one additional quadratic function by hand.

Exercise \#1: Consider the simple quadratic function $y=-x^{2}$.
(a) Write this parabola in the form $y=a x^{2}$, where a is the leading coefficient. Then, fill out the table below.

x	$y=-x^{2}$	(x, y)
-3		
-2		
-1		
0		
1		
2		
3		

(b) Graph the parabola given in this table on the grid provided. What is the range of this quadratic?

Range:

Some parabolas are concave up (open upward) and some are concave down (open downward). Let's see if we can find a pattern that tells us what controls this behavior.

Exercise \#2: Use your graphing calculator with a STANDARD WINDOW to sketch each of the following.

We will explore the reason for this pattern more in the next exercise with much simpler quadratic functions.
Exercise \#3: Use your calculator to sketch a graph of each of the following quadratics using the indicated window.

$$
y=2 x^{2}
$$

$$
y=3 x^{2}
$$

$$
y=4 x^{2}
$$

$y=-2 x^{2}$

$y=-3 x^{2}$
(f)

$y=-4 x^{2}$

So, it appears that we can now determine what controls the direction a parabola opens.
Exercise \#4: For the quadratic $y=a x^{2}+b x+c$ fill in the blanks:
(1) The parabola will open upwards, in other words look like
 if \qquad .

This type of quadratic function will have a minimum y-value.
(2) The parabola will open downwards, in other words look like

if \qquad . This type of quadratic function will have a maximum y-value.
\qquad

More Work with Parabolas Common Core Algebra I Homework

FLUENCY

1. Which of the following could be the equation of the quadratic shown below? Explain your reasoning.
(1) $y=-3 x^{2}+8 x-5$
(2) $y=4 x^{2}-6 x+7$
(3) $y=-2 x^{2}+12 x+11$
(4) $y=x^{2}-8 x-2$

Reasoning:
2. Based on the quadratic function shown in the table below, which of the following is the range of this function?
(1) $y \geq-7$
(3) $y \leq 4$
(2) $y \geq 3$
(4) $y \leq 11$

x	-1	0	1	2	3	4
y	3	9	11	9	3	-7

For Problems 3 - 5, use tables on your calculator to help you investigate these functions.
3. Which of the following quadratics will have a maximum value at $x=3$?
(1) $y=x^{2}-6 x+19$
(3) $y=-2 x^{2}+20 x-49$
(2) $y=-4 x^{2}+24 x-21$
(4) $y=2 x^{2}-3 x+7$
4. Which of the following quadratics will have a minimum value of -5 at $x=7$?
(1) $y=x^{2}-14 x+39$
(3) $y=x^{2}-14 x+44$
(2) $y=-x^{2}+14 x-54$
(4) $y=-x^{2}-10 x-18$
5. The parabola $y=-x^{2}+12 x-11$ has an axis of symmetry of $x=6$. Which of the following represents its range?
(1) $y \geq-11$
(3) $y \leq 6$
(2) $y \leq 25$
(4) $y \geq 10$

Applications

6. The height of an object that is traveling through the air can be well modeled by a quadratic function that opens downward. An object is fired upward and its height in feet above the ground is given by:
$h(t)=-16 t^{2}+64 t+80 \quad$ where the input, t, is the time, in seconds, the object has been in the air
(a) Using your calculator, sketch a graph of the object's height for all times where it is at or above the ground.
(b) What is its maximum height in feet?
(c) At what time does it hit the ground?
(d) Over what time interval is its height increasing?

7. The cost per computer produced at a factory depends on how many computers the factory produces in a day. The cost function is modeled by $C(n)=\frac{1}{500} n^{2}-n+200$, where n is the number of computers produced in a day and $C(n)$ is the unit cost, in dollars per computer.
(a) Calculate $C(50)$ and give an interpretation of your answer in terms of the scenario described.
(b) Does the cost have a minimum or maximum value? Explain. Use your calculator to find it.
(c) Based on (b), can this function have any real zeroes? Explain your thought process.
