\qquad

More Work Factoring Trinomials Common Core Algebra I

Factoring trinomials, which we first practiced in the last lesson, is a trying experience. All algebra students must learn how to do this procedure because of its immense number of practical applications. We will eventually see these applications, but for now, we need to get more practice factoring these trinomials. We begin by looking at a process known as complete factoring.

Exercise \#1: Consider the trinomial $4 x^{2}+20 x+24$.
(a) Write this trinomial as an equivalent expression involving the product of its term's gcf and another trinomial.
(b) Factor this additional trinomial to express the original in completely factored form.

Whenever we factor, we should always look to see if a greatest common factor exists that can be "factored out" to begin the problem. This will always make any subsequent factoring easier.

Exercise \#2: Rewrite each of the following trinomials in completely factored form.
(a) $10 x^{2}+15 x-10$
(b) $3 x^{3}-21 x^{2}+36 x$
(c) $7 x^{2}+21 x-70$
(d) $6 x^{2}-2 x-4$

Complete factoring can also involve factoring the difference of perfect squares. Try the next exercise to see how this works.

Exercise \#3: Write each of the following binomials in completely factored form.
(a) $2 x^{2}-18$
(b) $5 x^{3}-20 x$
(c) $12 x^{2}-3$
(d) $54 x^{2}-24$

If you understand factoring as breaking an expression into an equivalent product, then essentially you can always check to see if you have factored correctly. Complete factoring actually leads to a nice way to eliminate some guesses from trinomial guess and check methods.

Exercise \#4: Consider the trinomial $2 x^{2}+11 x+12$.
(a) Do the three terms of this trinomial have a gcf other than 1 ?
(c) Fill in the statement:

If a trinomial does not have a gcf, then
\qquad of its \qquad factors will
(d) Factor this trinomial by limiting your guesses.
have a gcf.

Exercise \#5: Use the Smart Guessing Tip from the last problem to factor $4 x^{2}-21 x-18$.

More Work Factoring Trinomials Common Core Algebra I Homework

FluENCY

1. Rewrite each of the following trinomials in completely factored form.
(a) $2 x^{2}+20 x+42$
(b) $6 x^{2}+33 x+15$
(c) $5 x^{2}-10 x-40$
(d) $30 x^{2}+20 x-10$
(e) $x^{3}+7 x^{2}+10 x$
(f) $4 x^{3}+10 x^{2}-24 x$
(g) $5 x^{2}-45$
(h) $2 x^{3}-2 x$
(i) $36-4 x^{2}$
(j) $20 x^{2}-125$
2. Which of the following is not a factor of $4 x^{3}+12 x^{2}-72 x$? Show work that justifies your choice.
(1) $(x+9)$
(3) $(x-3)$
(2) $4 x$
(4) $(x+6)$
3. Which of the following is the missing factor in the product $2(x-1)($? $)$ if it is equivalent to the trinomial $2 x^{2}+10 x-12$?
(1) $x+12$
(3) $x+3$
(2) $x+6$
(4) $x-5$
4. Use the Smart Guessing Tip from Exercise \#4 to help factor the following challenging trinomials. Note that they do not have a greatest common factor.
(a) $4 x^{2}+19 x+12$
(b) $6 x^{2}+7 x-24$

ReAsoning

5. Consider the cubic trinomial $x^{3}+8 x^{2}+7 x$.
(a) Write this trinomial as an equivalent product in completely factored form.
(b) How can the original trinomial and your answer to (b) help you determine the value of $(10)(17)(11)$ without a calculator? What is the value?
6. Use the complete factorization of $2 x^{3}+8 x^{2}+8 x$ to determine the value of the product $(20)(12)^{2}$. Explain your reasoning.
