MORE WORK FACTORING TRINOMIALS COMMON CORE ALGEBRA I

Factoring trinomials, which we first practiced in the last lesson, is a trying experience. All algebra students must learn how to do this procedure because of its immense number of **practical applications**. We will eventually see these applications, but for now, we need to get more practice factoring these trinomials. We begin by looking at a process known as **complete factoring**.

Exercise #1: Consider the trinomial $4x^2 + 20x + 24$.

- (a) Write this trinomial as an equivalent expression involving the product of its term's gcf and another trinomial.
- (b) Factor this additional trinomial to express the original in **completely factored form**.

Whenever we factor, we should always look to see if a greatest common factor exists that can be "factored out" to begin the problem. This will always make any subsequent factoring easier.

Exercise #2: Rewrite each of the following trinomials in completely factored form.

(a) $10x^2 + 15x - 10$ (b) $3x^3 - 21x^2 + 36x$

(c) $7x^2 + 21x - 70$

(d) $6x^2 - 2x - 4$

Complete factoring can also involve factoring the **difference of perfect squares**. Try the next exercise to see how this works.

Exercise #3: Write each of the following binomials in completely factored form.

(a) $2x^2 - 18$ (b) $5x^3 - 20x$

(c) $12x^2 - 3$ (d) $54x^2 - 24$

If you understand factoring as breaking an expression into an equivalent product, then essentially you can always check to see if you have factored correctly. Complete factoring actually leads to a nice way to eliminate some guesses from trinomial guess and check methods.

Exercise #4: Consider the trinomial $2x^2 + 11x + 12$.

- (a) Do the three terms of this trinomial have a gcf other than 1?
- (b) Why would the guesses (2x+2)(x+6), (2x+4)(x+3), and (2x+12)(x+1) not make sense given your answer to (a)?

- (c) Fill in the statement:
 - If a trinomial does not have a gcf, then

_____ of its _____ factors will

(d) Factor this trinomial by limiting your guesses.

have a gcf.

Exercise #5: Use the Smart Guessing Tip from the last problem to factor $4x^2 - 21x - 18$.

MORE WORK FACTORING TRINOMIALS COMMON CORE ALGEBRA I HOMEWORK

FLUENCY

- 1. Rewrite each of the following trinomials in completely factored form.
 - (a) $2x^2 + 20x + 42$ (b) $6x^2 + 33x + 15$

(c)
$$5x^2 - 10x - 40$$
 (d) $30x^2 + 20x - 10$

(e)
$$x^3 + 7x^2 + 10x$$
 (f) $4x^3 + 10x^2 - 24x$

(g)
$$5x^2 - 45$$
 (h) $2x^3 - 2x$

(i) $36-4x^2$ (j) $20x^2-125$

- 2. Which of the following is *not* a factor of $4x^3 + 12x^2 72x$? Show work that justifies your choice.
 - (1) (x+9) (3) (x-3)
 - (2) 4x (4) (x+6)

- 3. Which of the following is the missing factor in the product 2(x-1)(?) if it is equivalent to the trinomial $2x^2 + 10x 12?$
 - (1) x+12 (3) x+3
 - (2) x+6 (4) x-5
- 4. Use the Smart Guessing Tip from Exercise #4 to help factor the following challenging trinomials. Note that they do **not** have a greatest common factor.
 - (a) $4x^2 + 19x + 12$ (b) $6x^2 + 7x 24$

REASONING

- 5. Consider the **cubic trinomial** $x^3 + 8x^2 + 7x$.
 - (a) Write this trinomial as an equivalent product in completely factored form.
- (b) How can the original trinomial and your answer to (b) help you determine the value of (10)(17)(11) without a calculator? What is the value?

6. Use the complete factorization of $2x^3 + 8x^2 + 8x$ to determine the value of the product $(20)(12)^2$. Explain your reasoning.

