N.T.			
Name:			

Date:

FACTORING BASED ON CONJUGATES COMMON CORE ALGEBRA I

There are a number of different types of factoring techniques. But, each one of them boils down to reversing a product. We begin the lesson today by looking at products of **conjugate binomials**, or binomials of the form a+b and a-b.

Exercise #1: Find each of the following products of conjugate pairs. See if you can work out a pattern.

(a)
$$(x+5)(x-5)$$

(b)
$$(x-2)(x+2)$$

(c)
$$(4x+1)(4x-1)$$

(d)
$$(x+y)(x-y)$$

(e)
$$(2x+3)(2x-3)$$

(f)
$$(5x+2y)(5x-2y)$$

What we should see is that if we multiply conjugates, opposites always cancel and instead of getting our expected **trinomial**, we still get a binomial. Specifically.

MULTIPLYING CONJUGATE PAIRS

$$(a+b)(a-b)=a^2-b^2$$

Exercise #2: Use the pattern from Exercise #1 to quickly rewrite the following products.

(a)
$$(x+6)(x-6)$$

(b)
$$(5x+2)(5x-2)$$

(c)
$$(2x+7y)(2x-7y)$$

(d)
$$(4+x)(4-x)$$

(e)
$$(6+5y)(6-5y)$$

(f)
$$(10x-4y)(10x+4y)$$

We now should be able to reverse this multiplication in order to rewrite expressions that are the difference of perfect squares into products.

Exercise #3: Write each of the following first in the form $a^2 - b^2$ and then as equivalent products of conjugate pairs.

(a)
$$x^2 - 81$$

(b)
$$9x^2 - 4$$

(c)
$$25 - y^2$$

(d)
$$4x^2 - 81y^2$$

(e)
$$121x^2 - 1$$

(f)
$$1 - 4x^2$$

Never forget that when we factor, we are always rewriting an expression in a form that might look different, but it is ultimately still equivalent to the original.

Exercise #4: Let's take a look at the binomial $x^2 - 9$.

(a) Amelia believes that x^2-9 can be factored as (x+1)(x-9) while her friend Isabel believes that it is factored as (x-3)(x+3). Fill out the table below to develop evidence as to who is correct. Use technology on your calculator to help.

х	$x^2 - 9$	(x+1)(x-9)	(x-3)(x+3)
0			
1			
2			
3			

(b) By multiplying out their respective factors, show which of the two friends has the correct factorization. Use the Distributive Property Twice.

Amelia:
$$(x+1)(x-9)$$
 Isabel: $(x-3)(x+3)$

Isabel:
$$(x-3)(x+3)$$

FACTORING BASED ON CONJUGATE PAIRS COMMON CORE ALGEBRA I HOMEWORK

FLUENCY

1. Use the fact that the product of conjugates follows the following pattern, $(a+b)(a-b) = a^2 - b^2$, to quickly find the following products in standard form.

(a)
$$(x-5)(x+5)$$

(b)
$$(x+7)(x-7)$$

(c)
$$(2-x)(2+x)$$

(d)
$$(3x+2)(3x-2)$$

(e)
$$(4x+1)(4x-1)$$

(f)
$$(2x+1)(2x-1)$$

(g)
$$(5-4x)(5+4x)$$

(h)
$$(x^2-2)(x^2+2)$$

(i)
$$(x^3+4)(x^3-4)$$

2. Write each of the following binomials as an equivalent product of conjugates.

(a)
$$x^2 - 16$$

(b)
$$x^2 - 100$$

(c)
$$x^2 - 1$$

(d)
$$x^2 - 25$$

(e)
$$4 - x^2$$

(f)
$$9 - x^2$$

(g)
$$4x^2 - 1$$

(h)
$$16x^2 - 49$$

(i)
$$1 - 25x^2$$

(i)
$$x^2 - 9y^2$$

(k)
$$81 - 4t^2$$

(1)
$$x^4 - 36$$

APPLICATIONS

- 3. A square is changed into a new rectangle by increasing its width by 2 inches and decreasing its length by 2 inches. Make sure to draw pictures to help you solve these problems!
 - (a) If the original square had a side length of 8 inches, find its area and the area of the new rectangle. How many square inches larger is the square's area?
- (b) If the original square had a side length of 20 inches, find its area and the area of the new rectangle. How many square inches larger is the square's area?

(c) If the square had a side length of *x* inches, show that its area will always be four square inches more than the area of the new rectangle.

REASONING

- 4. Consider the numerical expression $51^2 49^2$.
 - (a) Use your calculator to find the numerical value of this expression.
- (b) Can you used facts about conjugate pairs to show why this difference should work out to be the answer from (a)?
- 5. Consider the following expression (x+2)(x-2)-(x+4)(x-4).
 - (a) Using your calculator, determine the value of this expression for various values of x.

х	(x+2)(x-2)-(x+4)(x-4)
-2	
-1	
0	
1	
2	

(b) Algebraically show that this product has a constant value (seen in (a)) regardless of the value of *x*.

