\qquad

Multiplying Polynomials
 Common Core Algebra I

Polynomials, as we saw in the last lesson, behave a lot like integers (whole numbers including the negatives). We saw that just like integers, adding one polynomial to another polynomial results in a third polynomial. The same will occur with multiplying them. First, a review problem.

Exercise \#1: Monomials are the simplest of polynomials. They consists of one term (terms are separated by addition and subtraction). Find the following products of monomials.
(a) $5 x^{3} \cdot 2 x^{2}$
(b) $-3 x \cdot-8 x$
(c) $\frac{1}{2} x^{2} y^{5} \cdot \frac{3}{4} x^{9} y$

We have also used the Distributive Property in previous lessons to multiply polynomials that are more complicated.

Exercise \#2: Find each of the following products in simplest form by using the distributive property once or twice.
(a) $2 x(3 x-1)$
(b) $x^{2}\left(4 x^{2}+3\right)$
(c) $-2 x^{2} y^{3}(2 x y-5 x)$
(d) $(x+2)(x-6)$
(e) $(2 x+7)(x+3)$
(f) $(3 x-2)(5 x-1)$

Never forget that as we do these manipulations we are using properties of equality to produce equivalent expressions.

Exercise \#3: Consider the product of the two binomial polynomials $(x-1)(x-3)$.
(a) Find this product and express it as a trinomial polynomial written in standard form. Fill in the result in the first row (third column) of table (b).
(b) Fill out the table below using tables on your calculator to show they are equivalent.

x	$(x-1)(x-3)$	
0		
1		
2		
3		
4		

We can evaluate more complicated products, just as we have done in the past with normal numbers. The key will always be the careful use of the distributive property.

Exercise \#4: Find each of the following more challenging products.
(a) $(2 x+5)^{2}$
(b) $(x+2)\left(x^{2}+4 x+3\right)$
(c) $(x-4)(x+3)(x-5)$
(d) $(3 x+2)^{3}$

Exercise \#5: Consider the product $(3 x+2)(2 x+1)$.
(a) Write this product as an equivalent trinomial expression in standard form.
(b) How can you use your answer from (a) to evaluate the product $(32)(21)$? Find the product and check using your calculator.
\qquad

Multiplying Polynomials Common Core Algebra I Homework

FLUENCY

1. Write the following products as polynomials in either x or t. The first is done as an example for you.
(a) $5 x(2 x-4)$
(b) $3 t(t+7)$
(c) $-4 x(5 x+1)$
$=(5 x)(2 x)-(5 x)(4)$
$=(5 \cdot 2)(x \cdot x)-(5 \cdot 4)(x)$
$=10 x^{2}-20 x$
(d) $4\left(t^{2}-5 t+2\right)$
(e) $x\left(x^{2}-2 x-3\right)$
(f) $-5 t\left(2 t^{2}+3 t-7\right)$
2. Perhaps the most important type of polynomial multiplication is that of two binomials. Make sure you are fluent with this skill. Write each of the following products as an equivalent polynomial written in standard form. The first problem is done as an example using repeated distribution.
(a) $(x+5)(x-3)$
(b) $(x-10)(x-4)$
(c) $(x+3)(x+12)$
$=(x+5)(x)+(x+5)(-3)$
$=(x)(x)+(5)(x)+(x)(-3)+(-5)(3)$
$=x^{2}+5 x-3 x-15$
$=x^{2}+2 x-15$
(d) $(2 x+3)(5 x+8)$
(e) $(4 x-1)(x+2)$
(f) $(6 x-5)(4 x-3)$
3. Never forget that squaring a binomial also a process of repeated distribution. Write each of the following perfect squares as trinomials in standard form.
(a) $(x+3)^{2}$
(b) $(x-10)^{2}$
(c) $(2 t+3)^{2}$
4. An interesting thing happens when you multiply two conjugate binomials. Conjugates have the property of having the same terms but differ by the operation between the two terms (in one case addition and in one case subtraction). Multiply each of the following conjugate pairs and state your answers in standard form. The first is done as an example
(a) $(x+3)(x-3)$
(b) $(x-5)(x+5)$
(c) $(10+x)(10-x)$
$=x(x-3)+3(x-3)$
$=x^{2}-3 x+3 x-9$
$=x^{2}-9$
(d) $(2 t+3)(2 t-3)$
(e) $(5 t+1)(5 t-1)$
(f) $(8-3 t)(8+3 t)$
5. Write each of the following products in standard polynomial form.
(a) $(x+3)(x-2)(x-8)$
(b) $(x+2)(x-2)(x+3)(x-3)$ (Hint: try to use \#4)

REASONING

6. Notice again how similar polynomials are to integers, i.e. the set $\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$. Write a statement below for polynomials based on the statement about integers.
Statement About Integers: An integer times an integer produces an integer.
Statement About Polynomials: \qquad
7. Consider the product $(3 x+1)^{2}$.
(a) Write this product in standard trinomial form.
(b) Use your answer in part (a) to determine the value of 31^{2} without your calculator.
