Name: _

Date: _

SIMPLIFYING EXPRESSIONS INVOLVING EXPONENTS COMMON CORE ALGEBRA I

There are many situations in science, engineering and other fields where a process is governed by **repeatedly multiplying (or dividing) by the same quantity**. Repeated multiplication (and division) is represented by **exponents**. We have worked with these already, but let's review some basics in the first exercise.

Exercise #1: Each of the following problems involves basic exponent ideas. Answer each to review your previous knowledge.

- (a) Represent 6^3 as an extended product. Do not evaluate the product.
- (c) If $x^3 \cdot x^5$ is written in the form of x^n what is the value of *n*? Write extended products if you don't remember the **Exponent Rule**.

(e) If the length of a rectangle is 3×10^5 meters and

written in scientific notation?

its width is 2×10^4 meters, what is its area

- (b) If $f(x) = 2x^3 + 7$, then f(-1) = ?
- (d) If the expression $(5x^3)^2$ is written in the form ax^b , what is the value of a + b?
- (f) Rewrite the product $(3x^2)^2 (2x^5)^3$ as an equivalent expression in simplest exponential form.

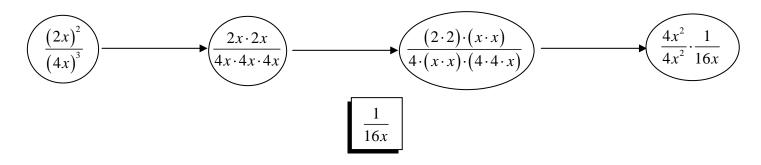
We also would like to be able to write **simpler equivalent expressions** involving ratios (or division problems) involving exponents. This all comes down to your ability to **"unmultiply" fractions**. The next exercise will illustrate.

Exercise #2: Consider the expression $\frac{2x^6}{4x^2}$.

- (a) Write this expression as the product of two fractions, one of which is equal to **1**.
- (b) Simplify the expression.

Let's see if we can develop a sense on how to simply these types of expressions more quickly.

Exercise #3: Rewrite each expression as the product of two fractions, one of which is equal to 1. Then, write it as an equivalent, but simpler, expression.

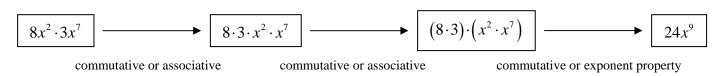

(a)
$$\frac{5^7}{5^3}$$
 (b) $\frac{x^4}{x^{10}}$ (c) $\frac{x^4 y^8}{x y^{10}}$

Now, let's simplify some more complicated exponential expressions. Each time, go back to rewriting the expressions based on basic principles like **repeated multiplication** and **fractions equivalent to 1**.

Exercise #4: Rewrite each of the following as equivalent exponential expressions in simplified exponential form.

(a)
$$\frac{(3x^2)^3}{9x^4}$$
 (b) $\frac{(5x^2y^3)^2}{(10xy)^2}$

Exercise #5: The diagram below show how the expression $\frac{(2x)^2}{(4x)^3}$ gets simplified. For each transition, given the reason (rule, property, etcetera) that justifies the manipulation.



SIMPLIFYING EXPRESSIONS INVOLVING EXPONENTS COMMON CORE ALGEBRA I HOMEWORK

FLUENCY

- 1. Which of the following is equivalent to $(3x^2y)(10x^5y^3)$?
 - (1) $30x^{10}y^3$ (3) $13x^7y^4$
 - (2) $30x^7y^4$ (4) $13x^{10}y^3$
- 2. If the expression $(2x^4)^3$ was written in ax^b form, which of the following would be the sum of a and b?
 - (1) 20 (3) 9
 - (2) 14 (4) 18
- 3. A square field has a side length of 6×10^3 meters. Which of the following is its area in square meters?
 - (1) 6×10^6 (3) 36×10^6
 - (2) 36×10^9 (4) 6×10^9
- 4. Circle the reason for each of the following manipulations used to simplify the product $(8x^2)(3x^3)$.

5. Rewrite each expression as the product of two fractions, one of which is equal to **1**. Then, write it as an equivalent, but simpler, expression.

(a)
$$\frac{10^5}{10^2}$$
 (b) $\frac{x^2}{x^6}$ (c) $\frac{x^4 y}{xy^8}$

6. Write each of the following expressions equivalently in simplest form.

(a)
$$\frac{4x^7}{8x^3}$$
 (b) $\frac{15x^{10}}{10x^2}$ (c) $\frac{16x}{20x^3}$

(d)
$$\frac{x^2 y^5}{xy}$$
 (e) $\frac{18x^4 y^2}{3x^8 y^5}$ (f) $\frac{6x^5 y^2}{8xy^3}$

7. For each of the following fractions, first simplify the numerator and denominator, then simplify the overall fraction. The first is done as an example.

(a)
$$\frac{(2x^2)^3}{(4x)^2}$$
 (b) $\frac{(10x^4)^2}{(5x^2)^3}$ (c) $\frac{(6x)^2}{(4x^2)^3}$

$$\boxed{=\frac{8x^6}{16x^2} = \frac{x^4}{2}}$$
(d) $\frac{(x^2y^5)^3}{(xy^2)^4}$ (e) $\frac{(2xy^2)^2}{4(x^2y^3)^2}$ (f) $\frac{(9xy)^2}{(3x)^3}$

REASONING

- 8. Kris has incorrectly simplified the expression $\frac{20x^6}{4x^2}$ as $5x^3$.
 - (a) Show using the value x = 2 that $\frac{20x^6}{4x^2}$ and (b) What is the correct simplification? $5x^3$ are not equivalent.

