\qquad

1. In the diagram below, $\triangle L K S$ is drawn with $\angle K$ equal to 90°, and altitude $\overline{P K}$. Given that $L P=7$ and $P S=17$, find $P K$. Round your answer to the nearest whole number.

2. In the diagram below, $\triangle F N M$ is drawn with $\angle N$ equal to 90°, and altitude $\overline{X N}$. Given that $F X=14$ and $X M=9$, find $X N$. Round your answer to the nearest whole number.

3. In the diagram below, $\triangle R G L$ is drawn with $\angle G$ equal to 90°, and altitude $\overline{K G}$. Given that $R K=16$ and $K L=17$, find $K G$. Round your answer to the nearest whole number.

4. In the diagram below, $\triangle W C O$ is drawn with $\angle C$ equal to 90°, and altitude $\overline{U C}$. Given that $W U=8$ and $U O=20$, find $U C$. Round your answer to the nearest whole number.

5. In the diagram below, $\triangle O A B$ is drawn with $\angle A$ equal to 90°, and altitude $\overline{U A}$. Given that $O U=14$ and $U A=8$, determine the length of $U B$. Round your answer to the nearest whole number.

6. In the diagram below, $\triangle V H X$ is drawn with $\angle H$ equal to 90°, and altitude $\overline{S H}$. Given that $S X=16$ and $S H=15$, determine the length of $V S$. Round your answer to the nearest whole number.

7. In the diagram below, $\triangle P C S$ is drawn with $\angle C$ equal to 90°, and altitude $\overline{D C}$. Given that $D S=6$ and $D C=9$, determine the length of $P D$. Round your answer to the nearest whole number.

8. In the diagram below, $\triangle P I L$ is drawn with $\angle I$ equal to 90°, and altitude $\overline{A I}$. Given that $P A=13$ and $A I=9$, determine the length of $A L$. Round your answer to the nearest whole number.

9. In the diagram below, $\triangle K B S$ is drawn with $\angle B$ equal to 90°, and altitude $\overline{E B}$. Given that $K S=23$ and $K E=16$, determine the length of $E B$. Round your answer to the nearest whole number.

10. In the diagram below, $\triangle K G F$ is drawn with $\angle G$ equal to 90°, and altitude $\overline{S G}$. Given that $K F=25$ and $S F=13$, determine the length of $S G$. Round your answer to the nearest whole number.

6.8 - geoMetricMean Easier- CWAnswers
\#: \qquad
11. $P K=11$
12. $X N=11$
13. $K G=16$
14. $U C=13$
15. $U B=5$
16. $V S=14$
17. $P D=14$
18. $A L=6$
19. $E B=11$
20. $S G=12$
