$\qquad$

## Non-Proportional Linear ReLAtionships Common Core Algebra I



In this unit's first lesson, we saw the simplest type of linear relationship, one where the two variables are proportional to one another. In that case, recall:

## Proportional Relationships

The variables $x$ and $y$ are proportional if: $\frac{y}{x}=k$ or $y=k x$. In other words, one variable is always a constant multiple of the other.

But, there are lots of linear relationships (ones that when graphed would form a line) that are not proportional. How can we relate them with an equation?

Exercise \#1: Consider the linear function $f(x)$ shown below.
(a) Evaluate $f(-2)$ and $f(1)$. What two coordinate points do these function values correspond to?
(b) Calculate the average rate of change of $f$ from $x=-2$ to $x=1$. This is also known as what quantity for this line?

(c) Is there a proportional relationship between $x$ and $y$ ? How can you check?
(d) Based on your $8^{\text {th }}$ grade coursework, what relationship does exist between the two variables? Write this equation and check it for the points from (a).

In general, what is always proportional on a linear function is the change in $\boldsymbol{y}$ to the change in $\boldsymbol{x}$, also known as the line's slope. This gives rise to what is known as the slope-intercept form of a line.

## The Slope-Intercept Form of a Linear Function

Given a linear function, $f(x)$, it can be expressed in equation form by:

$$
f(x)=y=m x+b
$$

where $m=$ average rate of change $=$ slope $=\frac{\Delta y}{\Delta x}$ and $b=y$-intercept of the line

Exercise \#2: Given the linear function $g(x)=\frac{1}{2} x+1$ do the following.
(a) Create a limited table of values to help graph the (b) Create a graph of the function on the axes function.
(c) Illustrate the slope of the function graphically.
(d) Circle the graph's $y$-intercept. below.


Exercise \#3: Use information about the slope and $y$-intercept to graph $y=-\frac{3}{5} x+4$ on the grid. Pick two points off the graph and calculate the average rate of change and verify that it is equal to the slope.

$\qquad$

## NONPROPORTIONAL LINEAR RELATIONSHIPS Common Core Algebra I Homework

## Fluency

1. For the linear function $g(x)=7 x-2$, which of the following is true?
(1) It has a slope of 7 and a $y$-intercept of -2 .
(2) It has a slope of -2 and a $y$-intercept of 7 .
(3) It has a slope of $7 x$ and a $y$-intercept of -2 .
(4) It has a slope of -2 and a $y$-intercept of $7 x$.
2. Which of the following represents the average rate of change of the function $g(x)=\frac{3}{2} x+1$ over the interval $-2 \leq x \leq 8$ ?
(1) $\frac{9}{7}$
(3) $\frac{2}{3}$
(2) $\frac{5}{4}$
(4) $\frac{3}{2}$
3. What is the equation of the line shown in the graph below?
(1) $y=2 x+4$
(3) $y=\frac{1}{2} x-2$
(2) $y=2 x-2$
(4) $y=\frac{1}{2} x+4$

4. Which of the following is the equation of a line whose slope is 3 and which passes through the point $(2,7)$ ?
(1) $y=3 x+7$
(3) $y=3 x+1$
(2) $y=7 x+3$
(4) $y=7 x-7$
5. Which of the following is the equation of a line that passes through the points $(0,8)$ and $(6,4)$ ? Use of grid is optional.
(1) $y=-\frac{2}{3} x+8$
(3) $y=-\frac{4}{5} x+4$
(2) $y=\frac{3}{2} x+6$
(4) $y=\frac{1}{2} x+8$

6. Graph each of the following linear functions on the grid provided and label with their equations. For each, create a table without the use of your calculator to maintain fluency with operation facts. Show your table. In the first problem, the $x$-values are given. In others, you will have to choose them. Always include $x=0$.
(a) $f(x)=2 x+3$

| $x$ | -5 | -2 | 0 | 2 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ |  |  |  |  |  |

(b) $g(x)=-\frac{1}{2} x-1$

| $x$ |  |  | 0 |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $g(x)$ |  |  |  |  |  |

(c) $h(x)=5-x$

| $x$ |  |  | 0 |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $h(x)$ |  |  |  |  |  |


7. State the values of the slope and the $y$-intercept for each of the following linear functions. Then, use this information to create graphs of the functions on the grid below. Label each with its equation.
(a) $y=\frac{2}{3} x-4$

Slope: $\qquad$ $y$-intercept: $\qquad$
(b) $y=-\frac{5}{2} x+7$

Slope: $\qquad$ $y$-intercept: $\qquad$
(c) $y=3 x-2$

Slope: $\qquad$ $y$-intercept: $\qquad$
(d) $y=-x+3$

Slope: $\qquad$ $y$-intercept: $\qquad$


