1. In the graph below, $\triangle PRC$ follows a sequence of transformations to make $\triangle P''R''C''$.

What is the sequence of tranformations?

- (1) Reflection then reflection
- (2) Reflection then rotation
- (3) Translation then rotation
- (4) Translation then reflection
- (5) I do not know. (Worth $\frac{1}{3}$ points)

2. In the graph below, there are several points plotted.

After point N is rotated 90° counterclockwise around the origin, which point is its image?

- (1) O
- (2) D
- (3) M
- (4) F
- (5) I do not know. (Worth $\frac{1}{3}$ points)
- 3. Given $\triangle VSG$, after which of the following transformations, will $\triangle VSG$ not be congruent to $\triangle V'S'G'$?
- (1) A translation 1 right and 6 up
- (2) A reflection over the line y = -7
- (3) A rotation 180° counterclockwise around the point (-6, -7)
- (4) A dilation with a scale factor of 3
- (5) I do not know. (Worth $\frac{1}{3}$ points)

4. In the diagram below square ZYLH is drawn.

Which of the following will *not* map the square onto itself?

- (1) x = 3
- (2) Rotation 90° around (4,3)
- (3) y = 3
- (4) y = x 1
- (5) I do not know. (Worth $\frac{1}{3}$ points)
- 5. Which shape always has exactly 6 lines of reflection that will map it onto itself?
- (1) regular hexagon
- (2) regular triangle
- (3) regular octagon
- (4) regular pentagon
- (5) I do not know. (Worth $\frac{1}{3}$ points)

- 6. What is the minimum number of degrees for a regular decagon to rotate onto itself?
- $(1) 72^{\circ}$
- (2) 45°
- (3) 36°
- $(4) \ 40^{\circ}$
- (5) I do not know. (Worth $\frac{1}{3}$ points)

7. Given the graph below, identify the sequence of transformations used to map $\triangle UBE$ onto $\triangle U''B''E''$.

Explain why $\triangle UBE$ is congruent to $\triangle U''B''E''$.

8. Below, $\triangle WNV$ follows a sequence of transformations to make $\triangle W''N''V''$.

Describe a sequence of transformations that will map $\triangle WNV$ onto $\triangle W''N''V''$.

9. Given $\triangle GZV$ on the set of axes below, graph $\triangle G'Z'V'$ after a rotation of 90° counterclockwise around the origin.

10. In the graph below of $\triangle MDK$, perform a translation left 10 followed by a reflection over the line y=0 to make $\triangle M''D''K''$.

