3.9 Transformations Test Review - CW \qquad

1. In the graph below, $\triangle P R C$ follows a sequence of transformations to make $\triangle P^{\prime \prime} R^{\prime \prime} C^{\prime \prime}$.

What is the sequence of tranformations?
(1) Reflection then reflection
(2) Reflection then rotation
(3) Translation then rotation
(4) Translation then reflection
(5) I do not know. (Worth $\frac{1}{3}$ points)
2. In the graph below, there are several points plotted.

After point N is rotated 90° counterclockwise around the origin, which point is its image?
(1) O
(2) D
(3) M
(4) F
(5) I do not know. (Worth $\frac{1}{3}$ points)
3. Given $\triangle V S G$, after which of the following transformations, will $\triangle V S G$ not be congruent to $\triangle V^{\prime} S^{\prime} G^{\prime}$?
(1) A translation 1 right and 6 up
(2) A reflection over the line $y=-7$
(3) A rotation 180° counterclockwise around the point $(-6,-7)$
(4) A dilation with a scale factor of 3
(5) I do not know. (Worth $\frac{1}{3}$ points)
4. In the diagram below square $Z Y L H$ is drawn.

Which of the following will not map the square onto itself?
(1) $x=3$
(2) Rotation 90° around $(4,3)$
(3) $y=3$
(4) $y=x-1$
(5) I do not know. (Worth $\frac{1}{3}$ points)
5. Which shape always has exactly 6 lines of reflection that will map it onto itself?
(1) regular hexagon
(2) regular triangle
(3) regular octagon
(4) regular pentagon
(5) I do not know. (Worth $\frac{1}{3}$ points)
6. What is the minimum number of degrees for a regular decagon to rotate onto itself?
(1) 72°
(2) 45°
(3) 36°
(4) 40°
(5) I do not know. (Worth $\frac{1}{3}$ points)
\qquad
7. Given the graph below, identify the sequence of transformations used to map $\triangle U B E$ onto $\triangle U^{\prime \prime} B^{\prime \prime} E^{\prime \prime}$.

Explain why $\triangle U B E$ is congruent to $\triangle U^{\prime \prime} B^{\prime \prime} E^{\prime \prime}$.
\qquad
8. Below, $\triangle W N V$ follows a sequence of transformations to make $\triangle W^{\prime \prime} N^{\prime \prime} V^{\prime \prime}$.

Describe a sequence of transformations that will map $\triangle W N V$ onto $\triangle W^{\prime \prime} N^{\prime \prime} V^{\prime \prime}$.
3.9 Transformations Test Review - CW
\#: \qquad
9. Given $\triangle G Z V$ on the set of axes below, graph $\triangle G^{\prime} Z^{\prime} V^{\prime}$ after a rotation of 90° counterclockwise around the origin.

3.9 Transformations Test Review - CW
\#: \qquad
10. In the graph below of $\triangle M D K$, peform a translation left 10 followed by a reflection over the line $y=0$ to make $\triangle M^{\prime \prime} D^{\prime \prime} K^{\prime \prime}$.

