\qquad

1. In the graph below, $\triangle A M K$ follows a sequence of transformations to make $\triangle A^{\prime \prime} M^{\prime \prime} K^{\prime \prime}$.

What is the sequence of tranformations?
(1) Reflection then reflection
(2) Reflection then rotation
(3) Translation then reflection
(4) Translation then rotation
(5) I do not know. (Worth $\frac{1}{3}$ points)
2. In the graph below, there are several points plotted.

After point T is rotated 90° clockwise around the origin, which point is its image?
(1) H
(2) L
(3) M
(4) R
(5) I do not know. (Worth $\frac{1}{3}$ points)
3. Given $\triangle Z G H$, after which of the following transformations, will $\triangle Z G H$ not be congruent to $\triangle Z^{\prime} G^{\prime} H^{\prime}$?
(1) A reflection over the line $x=0$
(2) A dilation with a scale factor of 3
(3) A translation 4 right and 8 up
(4) A rotation 180° clockwise around the point $(9,5)$
(5) I do not know. (Worth $\frac{1}{3}$ points)
4. In the diagram below square $F L D P$ is drawn.

Which of the following will not map the square onto itself?
(1) Rotation 90° around (1,2)
(2) $x=2$
(3) $y=x+1$
(4) $y=2$
(5) I do not know. (Worth $\frac{1}{3}$ points)
5. Which shape always has exactly 10 lines of reflection that will map it onto itself?
(1) regular pentagon
(2) regular hexagon
(3) regular decagon
(4) equilateral triangle
(5) I do not know. (Worth $\frac{1}{3}$ points)
6. What is the minimum number of degrees for a regular pentagon to rotate onto itself?
(1) 72°
(2) 45°
(3) 36°
(4) 90°
(5) I do not know. (Worth $\frac{1}{3}$ points)
\qquad
7. Given the graph below, identify the sequence of transformations used to map $\triangle I D N$ onto $\triangle I^{\prime \prime} D^{\prime \prime} N^{\prime \prime}$.

Explain why $\triangle I D N$ is congruent to $\triangle I^{\prime \prime} D^{\prime \prime} N^{\prime \prime}$.
\qquad
8. Below, $\triangle A N Y$ follows a sequence of transformations to make $\triangle A^{\prime \prime} N^{\prime \prime} Y^{\prime \prime}$.

Describe a sequence of transformations that will map $\triangle A N Y$ onto $\triangle A^{\prime \prime} N^{\prime \prime} Y^{\prime \prime}$.
\qquad
9. Given $\triangle T V A$ on the set of axes below, graph $\triangle T^{\prime} V^{\prime} A^{\prime}$ after a rotation of 90° clockwise around the origin.

3.12 Transformations Test Review - CW
\#: \qquad
10. In the graph below of $\triangle K L Y$, peform a translation right 10 followed by a reflection over the line $y=0$ to make $\triangle K^{\prime \prime} L^{\prime \prime} Y^{\prime \prime}$.

