\qquad

1. In the graph below, $\triangle S F R$ follows a sequence of transformations to make $\triangle S^{\prime \prime} F^{\prime \prime} R^{\prime \prime}$.

What is the sequence of tranformations?
(1) Reflection then reflection
(2) Translation then reflection
(3) Translation then rotation
(4) Reflection then rotation
(5) I do not know. (Worth $\frac{1}{3}$ points)
2. In the graph below, there are several points plotted.

After point W is rotated 90° counterclockwise around the origin, which point is its image?
(1) L
(2) M
(3) C
(4) A
(5) I do not know. (Worth $\frac{1}{3}$ points)
3. Given $\triangle M E N$, after which of the following transformations, will $\triangle M E N$ not be congruent to $\triangle M^{\prime} E^{\prime} N^{\prime}$?
(1) A reflection over the x-axis
(2) A translation 5 right and 1 up
(3) A dilation with a scale factor of 2
(4) A rotation 180° counterclockwise around the point $(-7,-10)$
(5) I do not know. (Worth $\frac{1}{3}$ points)
4. In the diagram below square $W M Y X$ is drawn.

Which of the following will not map the square onto itself?
(1) $x=5$
(2) Rotation 90° around $(-2,5)$
(3) $y=x+7$
(4) $y=5$
(5) I do not know. (Worth $\frac{1}{3}$ points)
5. Which shape always has exactly 9 lines of reflection that will map it onto itself?
(1) square
(2) regular octagon
(3) regular hexagon
(4) regular nonagon
(5) I do not know. (Worth $\frac{1}{3}$ points)
6. What is the minimum number of degrees for a regular triangle to rotate onto itself?
(1) 40°
(2) 72°
(3) 120°
(4) 45°
(5) I do not know. (Worth $\frac{1}{3}$ points)
\qquad
7. Given the graph below, identify the sequence of transformations used to map $\triangle V N U$ onto $\triangle V^{\prime \prime} N^{\prime \prime} U^{\prime \prime}$.

Explain why $\triangle V N U$ is congruent to $\triangle V^{\prime \prime} N^{\prime \prime} U^{\prime \prime}$.
\qquad
8. Below, $\triangle Y E B$ follows a sequence of transformations to make $\triangle Y^{\prime \prime} E^{\prime \prime} B^{\prime \prime}$.

Describe a sequence of transformations that will map $\triangle Y E B$ onto $\triangle Y^{\prime \prime} E^{\prime \prime} B^{\prime \prime}$.
\qquad
9. Given $\triangle A L C$ on the set of axes below, graph $\triangle A^{\prime} L^{\prime} C^{\prime}$ after a rotation of 90° counterclockwise around the origin.

\qquad
10. In the graph below of $\triangle L O B$, peform a translation down 10 followed by a reflection over the line $x=0$ to make $\triangle L^{\prime \prime} O^{\prime \prime} B^{\prime \prime}$.

