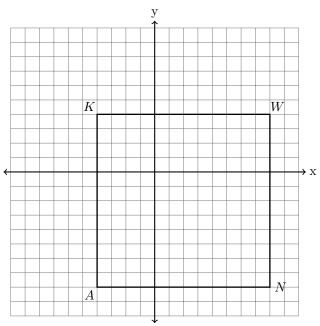

1. In the graph below, $\triangle ZOB$ follows a sequence of transformations to make $\triangle Z''O''B''$.

What is the sequence of tranformations?

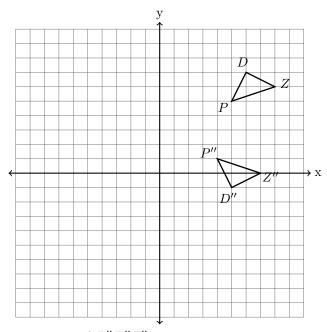
- (1) Reflection then rotation
- (2) Reflection then reflection
- (3) Translation then rotation
- (4) Translation then reflection
- (5) I do not know. (Worth $\frac{1}{3}$ points)


2. In the graph below, there are several points plotted.

After point L is rotated 90° clockwise around the origin, which point is its image?

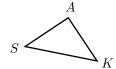
- (1) Y
- (2) S
- (3) F
- (4) C
- (5) I do not know. (Worth $\frac{1}{3}$ points)
- 3. Given $\triangle ICH$, after which of the following transformations, will $\triangle ICH$ not be congruent to $\triangle I'C'H'$?
- (1) A translation 2 right and 8 up
- (2) A dilation with a scale factor of 5
- (3) A rotation 180° counterclockwise around the point (2, -4)
- (4) A reflection over the line y = -9
- (5) I do not know. (Worth $\frac{1}{3}$ points)

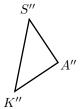
4. In the diagram below square AKWN is drawn.



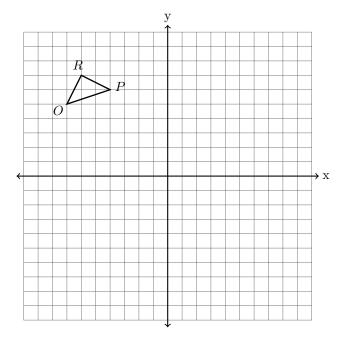
Which of the following will *not* map the square onto itself?

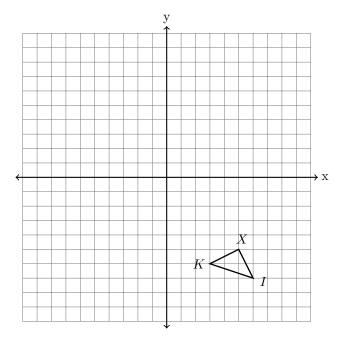
- (1) y = -2
- (2) x = -2
- (3) y = x 4
- (4) Rotation 90° around (2,-2)
- (5) I do not know. (Worth $\frac{1}{3}$ points)
- 5. Which shape always has exactly 5 lines of reflection that will map it onto itself?
- (1) regular pentagon
- (2) regular hexagon
- (3) regular octagon
- (4) regular nonagon
- (5) I do not know. (Worth $\frac{1}{3}$ points)


- 6. What is the minimum number of degrees for a regular pentagon to rotate onto itself?
- $(1) 120^{\circ}$
- (2) 45°
- $(3) 40^{\circ}$
- $(4) 72^{\circ}$
- (5) I do not know. (Worth $\frac{1}{3}$ points)


7. Given the graph below, identify the sequence of transformations used to map $\triangle PDZ$ onto $\triangle P''D''Z''$.

Explain why $\triangle PDZ$ is congruent to $\triangle P''D''Z''$.


8. Below, $\triangle SAK$ follows a sequence of transformations to make $\triangle S''A''K''$.



Describe a sequence of transformations that will map $\triangle SAK$ onto $\triangle S''A''K''$.

9. Given $\triangle ORP$ on the set of axes below, graph $\triangle O'R'P'$ after a rotation of 90° clockwise around the origin.

10. In the graph below of $\triangle KXI$, perform a translation left 10 followed by a reflection over the line y=0 to make $\triangle K''X''I''$.

