\qquad

1. In the graph below, $\triangle Z O B$ follows a sequence of transformations to make $\triangle Z^{\prime \prime} O^{\prime \prime} B^{\prime \prime}$.

What is the sequence of tranformations?
(1) Reflection then rotation
(2) Reflection then reflection
(3) Translation then rotation
(4) Translation then reflection
(5) I do not know. (Worth $\frac{1}{3}$ points)
2. In the graph below, there are several points plotted.

After point L is rotated 90° clockwise around the origin, which point is its image?
(1) Y
(2) S
(3) F
(4) C
(5) I do not know. (Worth $\frac{1}{3}$ points)
3. Given $\triangle I C H$, after which of the following transformations, will $\triangle I C H$ not be congruent to $\triangle I^{\prime} C^{\prime} H^{\prime}$?
(1) A translation 2 right and 8 up
(2) A dilation with a scale factor of 5
(3) A rotation 180° counterclockwise around the point $(2,-4)$
(4) A reflection over the line $y=-9$
(5) I do not know. (Worth $\frac{1}{3}$ points)
4. In the diagram below square $A K W N$ is drawn.

Which of the following will not map the square onto itself?
(1) $y=-2$
(2) $x=-2$
(3) $y=x-4$
(4) Rotation 90° around (2,-2)
(5) I do not know. (Worth $\frac{1}{3}$ points)
5. Which shape always has exactly 5 lines of reflection that will map it onto itself?
(1) regular pentagon
(2) regular hexagon
(3) regular octagon
(4) regular nonagon
(5) I do not know. (Worth $\frac{1}{3}$ points)
6. What is the minimum number of degrees for a regular pentagon to rotate onto itself?
(1) 120°
(2) 45°
(3) 40°
(4) 72°
(5) I do not know. (Worth $\frac{1}{3}$ points)
\qquad
7. Given the graph below, identify the sequence of transformations used to map $\triangle P D Z$ onto $\triangle P^{\prime \prime} D^{\prime \prime} Z^{\prime \prime}$.

Explain why $\triangle P D Z$ is congruent to $\triangle P^{\prime \prime} D^{\prime \prime} Z^{\prime \prime}$.
\qquad
8. Below, $\triangle S A K$ follows a sequence of transformations to make $\triangle S^{\prime \prime} A^{\prime \prime} K^{\prime \prime}$.

Describe a sequence of transformations that will map $\triangle S A K$ onto $\triangle S^{\prime \prime} A^{\prime \prime} K^{\prime \prime}$.
\qquad
9. Given $\triangle O R P$ on the set of axes below, graph $\triangle O^{\prime} R^{\prime} P^{\prime}$ after a rotation of 90° clockwise around the origin.

\qquad
10. In the graph below of $\triangle K X I$, peform a translation left 10 followed by a reflection over the line $y=0$ to make $\triangle K^{\prime \prime} X^{\prime \prime} I^{\prime \prime}$ 。

